
CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 5: Integrity I
Instructor: Nikos Triandopoulos

February 5, 2026

https://brown-csci1660.github.io

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

Last class

u Cryptography

u Symmetric-key encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography

2

Today

u Cryptography

u Symmetric-key encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography

u Integrity & reliable communication

u Message authentication codes (MACs)

3

5.0 Introduction to
modern cryptography

4

Recall: Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions

u B) precise assumptions

u C) provable security

5

A) Formal definitions

abstract but rigorous description of security problem

u computing setting

u involved parties, communication model, core functionality

u underlying cryptographic scheme

u e.g., symmetric-key encryption scheme

u desired properties

u security related

u non-security related (e.g., correctness, efficiency, etc.)

6

Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems

7

B) Precise assumptions

abstract but rigorous description of security problem

u computing setting
u system set up, initial state, randomness, communication, timing

u adversary

u threat model, capabilities, limitations

u rules of the game

u key management, security of used tools, hardness of computational problems

8

B) Why precise assumptions are important?

u basis for proofs of security

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
9

C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack

10

Why provable security is important?

Typical performance

u in some areas of computer science
formal proofs may not be essential
u simulate hard-to-analyze algorithm to

experimentally study
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means

in its power to break a scheme

11

The 3 pillars in Cryptography

u We have already been familiar with all three!

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

12

Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M or ⊥

13

Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

2) C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

14

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m1 and m2 and ciphertexts c, it holds that

Pr[EK(m1) = c] = Pr[EK(m2) = c],

where probabilities are measured over the possible keys chosen by Gen.

Proof

u events “EncK(m1) = c”, “m1 ⊕ K = c” and “K = m1 ⊕ c” are equal-probable
u K is chosen at random, irrespectively of m1 and m2, with probability 2-n

u thus, the ciphertext does not reveal anything about the plaintext

15

From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-128)

u to adversaries with bounded computational power (e.g., attacker invests 200ys)

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)

16

Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1)

 non-negligibly better than guessing

17

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|

Main security properties against eavesdropping
“plain” security

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack

18

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

Eve

Encryption
Algorithm

ATΠ

Game-based computational CPA-security

19

m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice

On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies randomized encryption – can you see why?

u EAV-security for multiple messages implies probabilistic encryption

20

Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random

21

Tools for “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)

22

EncryptionPlaintext Ciphertext
… RESTUOKD … rrywytovty

key

state

STU
(block)(next block)

EncryptionPlaintext Ciphertext
OKD tty

key

Generic PRG-based symmetric encryption

u Fixed-length message encryption

23

encryption scheme is plain-secure
as long as the underlying PRG is secure

Stream ciphers: Modes of operations

u Bounded- or arbitrary-length message encryption

24

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure

5.1 Pseudorandom functions
(or block ciphers)

25

Block ciphers

26

STU
(block)(next block)

EncryptionPlaintext Ciphertext

OKD tty

key

Realizing ideal block ciphers in practice

We want a random mapping of n-bit inputs to n-bit outputs
u there are ~2^(n2n) possible such mappings
u none of the above can be implemented in practice

Instead, we use a keyed function Fk : {0,1}n → {0,1}n

u indexed by a t-bit key k
u there are only 2t such keyed functions

u a random key selects a
“random-enough” mapping
or a pseudorandom function

27

Fk

x

y = Fk(x)

Generic PRF-based symmetric encryption

u Fixed-length message encryption

28

encryption scheme is advanced-secure
as long as the underlying PRF is secure

Generic PRF-based symmetric encryption (cont.)

u Arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateless block cipher,

repeatedly, to encrypt/decrypt a sequence of message blocks

29

5.2 Modes of operations
(of block ciphers)

30

Block ciphers: Modes of operations (I)

u OFB – output feedback

u uniform IV

u no need message length to be multiple of n

u resembles synchronized stream-cipher mode

u CPA-secure if Fk is PRF

31

Block ciphers: Modes of operations (II)

u CTR – counter mode

u uniform ctr

u no need message length to be multiple of n

u resembles synchronized stream-cipher mode

u CPA-secure if Fk is PRF

u no need for Fk to be invertible

u parallelizable

32

Block ciphers: Modes of operations (III)

u ECB - electronic code book

u insecure, of only historic value

u deterministic, thus not CPA-secure

u actually, not even EAV-secure

33

Electronic Code Book (ECB)

u The simplest mode of operation
u block P[i] encrypted into ciphertext block C[i] = Enck(P[i])

u block C[i] decrypted into plaintext block M[i] = Deck(C[i])

34

u poor security

u produces the same ciphertext on the
same plaintext (under the same key)

u documents and images are not suitable
for ECB encryption, since patterns in the
plaintext are repeated in the ciphertext

u e.g., ECB

Strengths & weaknesses of ECB

Strengths

u very simple
u allows for parallel encryptions

of the blocks of a plaintext
u can tolerate the loss or

damage of a block

Weaknesses

35

Block ciphers: Modes of operations (IV)

u CBC – cipher block chaining

u CPA-secure if Fk a permutation

u uniform IV

u otherwise security breaks

u Chained CBC

u use last block ciphertext of current
message as IV of next message

u saves bandwidth but not CPA-secure

36

Cipher Block Chaining (CBC) [or chaining]

Alternatively, the previous-block ciphertext is “mixed” with the current-block plaintext
u e.g., using XOR

u each block is encrypted as C[i] = Enck (C[i -1] Å P[i]),

u each ciphertext is decrypted as P[i] = C[i -1] Å Deck (C[i])

u here, C[0] = IV is a uniformly random initialization vector that is transmitted separately

37

Enck

P[1]

IV

C[1]

Enck

P[2]

C[2]

Deck

P[1]

IV

C[1]

Deck

P[2]

C[2]

CBC

Notes on modes of operation

u block length matters

u if small, IV or ctr can be “recycled”

u IV are often misused

u e.g., reused or not selected uniformly at random

u in this case, CBC is a better option than OFB/CTR

38

5.3 (Stream & block)
Ciphers in practice

39

Recall: Stream ciphers

40

EncryptionPlaintext Ciphertext

… RESTUOKD … rrywytovty

key

state

Recall: Block ciphers

41

STU
(block)(next block)

EncryptionPlaintext Ciphertext

OKD tty

key

Techniques used in practice for symmetric encryption

u Substitution
u exchanging one set of bits for another set

u Transposition
u rearranging the order of the ciphertext bits

u to break any regularities in the underlying plaintext

u Confusion
u enforcing complex functional relationship between the plaintext/key pair & the ciphertext

u e.g., flipping a bit in plaintext or key causes unpredictable changes to new ciphertext

u Diffusion
u distributes information from single plaintext characters over entire ciphertext output

u e.g., even small changes to plaintext result in broad changes to ciphertext

42

Substitution boxes

u substitution can also be done on binary numbers

u such substitutions are usually described by substitution boxes, or S-boxes

43

Brute-force attacks against stream/block ciphers

Brute-force attack amounts to checking all possible 2t seeds/keys
u Due to confusion & diffusion, for stream/block ciphers, by construction

the key cannot be extracted even if a valid plaintext/ciphertext pair is captured
u Thus, as expected, the longer the key size the stronger the security

44

Stream Vs. Block ciphers

 Stream Block
Advantages • Speed of

transformation
• Low error

propagation

• High diffusion
• Immunity to

insertion of
symbol

Disadvantages • Low diffusion
• Susceptibility to

malicious
insertions and
modifications

• Slowness of
encryption

• Padding
• Error

propagation

45

5.4 Block ciphers in
practice: DES & AES

46

DES: The Data Encryption Standard

u Symmetric block cipher
u Developed in 1976 by IBM for the US National Institute of Standards and

Technology (NIST)
u Employs substitution & transposition, on top of each other, for 16 rounds

u block size = 64 bits, key size = 56 bits

u Strengthening (since 56-bit security is not considered adequately strong)
u double DES: E(k2, E(k1, m)), not effective!

u triple DES: E(k3, E(k2, E(k1, m))), more effective
u two keys, i.e., k1=k3, with E-D-E pattern, 80-bit security
u three keys with E-E-E pattern, 112-bit security

47

DES: Security strength

48

DES: High-level view

49

DES: Basic structure

50

DES: Initial and final permutations

u Straight P-boxes that are inverses of each other w/out crypto significance

51

DES: Round via Feistel network

u DES uses 16 rounds, each applying a Feistel cipher
u L(i) = R(i-1)

u R(i) = L(i-1) XOR f (K(i),R(i-1)),
where f applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output

52

DES: Low-level view

u Expansion box

u since RI−1 is a 32-bit input & KI is a 48-bit key,
we first need to expand RI−1 to 48 bits

u S-box

u where real mixing (confusion) occurs

u DES uses 8 6-to-4 bits S-boxes

53

DES: S-box in detail

54

AES: Advanced Encryption System
u symmetric block cipher, a.k.a. Rijndael

u developed in 1999 by independent Dutch
cryptographers in response to the 1997 NIST’s
public call for a replacement to DES

u still in common use

u on the longevity of AES

u larger key sizes possible to use

u not known serious practical attacks

55

AES: Key design features
u use of substitution, confusion & diffusion
u block size is 128 bits
u variable-length keys: key size is 128, 192 or 256 bits

u variable number of rounds: 10, 12 or 14 rounds for keys of resp. 128, 192 or 256 bits
u depending on key size, yields ciphers known as AES-128, AES-192, and AES-256

56

AES: Basic structure

57

AES: Basic structure (cont.)

58

DES vs. AES

59

5.5 Message
authentication

60

Recall: Integrity

Fundamental security property
u an asset is modified only by authorized parties

u “I” in the CIA triad

“computer security seeks to prevent unauthorized viewing (confidentiality)
or modification (integrity) of data while preserving access (availability)”

Alteration
u main threat against

integrity of
in-transit data

u e.g., Attacker-In-The-Middle attack

61

Security problems studied by modern cryptography

u Classical cryptography: message encryption

u early crypto schemes tried to provide secrecy / confidentiality

u Modern cryptography: wide variety of security problems

u today we need to study a large set of security properties beyond secrecy

u The sibling of message encryption: message authentication

u another cornerstone of any secure system aiming to provide authenticity & integrity

62

Message authentication: Motivation

Information has value, but only when it is correct

u random, incorrect, inaccurate or maliciously altered data is useless or harmful

u message authentication = message integrity + authenticity

u while in transit (or at rest), no message should be modified by an outsider

u no outsider can impersonate the stated message sender (or owner)

u it is often necessary / worth to protect critical / valuable data

u message encryption

u while in transit (or at rest), no message should be leaked to an outsider

63

Example 1

Secure electronic banking

u a bank receives an electronic request to transfer $1,000 from Alice to Bob

Concerns

u who ordered the transfer, Alice or an attacker (e.g., Bob)?

u is the amount the intended one or was maliciously modified while in transit?

u adversarial Vs. random message-transmission errors

u standard error-correction is not sufficient to address this concern

64

Example 2

Web browser cookies
u a user is performing an online purchase at Amazon

u a “cookie” contains session-related info, as client-server HTTP traffic is stateless

u stored at the client, included in messages sent to server

u contains client-specific info that affects the transaction

u e.g., the user’s shopping cart along with a discount due to a coupon

Concern
u was such state maliciously altered by the client (possibly harming the server)?

65

Integrity of communications / computations

Highly important
u any unprotected system cannot be assumed to be trustworthy w.r.t.

u origin/source of information (due to impersonation attacks, phishing, etc.)

u contents of information (due to man-in-the-middle attacks, email spam, etc.)

u overall system functionality

Prevention Vs. detection
u unless system is “closed,” adversarial tampering with its integrity cannot be avoided!

u goal: identify system components that are not trustworthy
u detect tampering or prevent undetected tampering

u e.g., avoid “consuming” falsified information
66

Encryption does not imply authentication

A common misconception

“since ciphertext c hides message m, Mallory cannot meaningfully modify m via c”

Why is this incorrect?
u all encryption schemes (seen so far) are based on one-time pad, i.e., masking via XOR

u consider flipping a single bit of ciphertext c; what happens to plaintext m?

u such property of one-time pad does not contradict the secrecy definitions

Generally, secrecy and integrity are distinct properties
u encrypted traffic generally provides no integrity guarantees

67

5.6 Message
authentication codes
(MACs)

68

m

Problem setting: Reliable communication

Two parties wish to communicate over a channel
u Alice (sender/source) wants to send a message m to Bob (recipient/destination)

Underlying channel is unprotected
u Mallory (attacker/adversary) can manipulate any sent messages

u e.g., message transmission via a compromised router

69

Mallory

Alice Bobm m

Solution concept: Symmetric-key message authentication

Main idea
u secretly annotate or “sign” message so that it is unforgeable while in transit

u Alice tags her message m with tag t, which is sent along with plaintext m

u Bob verifies authenticity of received message using tag t

u Mallory can manipulate m, t but “cannot forge” a fake verifiable pair m’, t’

u Alice and Bob share a secret key k that is used for both operations

70

Mallory

Alice Bobm m, t
tag / sign

k k

verify mm’, t’

REJECT

ACCEPT

Security tool: Message Authentication Code
Abstract cryptographic primitive, a.k.a. MAC, defined by
u a message space M; and
u a triplet of algorithms (Gen, Mac, Vrf)

u Gen, Mac are probabilistic algorithms, whereas Vrf is deterministic
u Gen outputs a uniformly random key k (from some key space K)

71

Mallory

Alice BobMac
m, tm Vrf m’m’, t’

M: set of possible
messages

Gen

k k REJECT

ACCEPT

Desired properties for MACs
By design, any MAC should satisfy the following
u efficiency: key generation & message transformations “are fast”

u correctness: for all m and k, it holds that Vrfk(m, Mack(m)) = ACCEPT

u security: one “cannot forge” a fake verifiable pair m’, t’

72

Alice BobMacm Vrf m

M: set of possible
messages

Gen

k k REJECT

ACCEPT

Mallory

m, tm, t

Main application areas

Secure communication

u verify authenticity of messages
sent among parties

u assumption
u Alice and Bob securely generate,

distribute and store shared key k
u attacker does not learn key k

Secure storage

u verify authenticity of files
outsourced to the cloud

u assumption
u Alice securely generates and stores

key k
u attacker does not learn key k

73

Mallory

Alice Bob

k k

messages

Mallory

Alice

k

files

Conventions

Random key selection
u typically, Gen selects key k uniformly at random from the key space K

Canonical verification
u when Mac is deterministic, Vrf typically amounts to re-computing the tag t

u Vrfk(m, t): 1. t’ := Mack(m) 2. if t = t’, output ACCEPT else output REJECT

u but conceptually the following operations are distinct

u authenticating m (i.e., running Mac) Vs. verifying authenticity of m (i.e., running Vrf)

74

AT

MAC security

75

m1

Gen → k

t1

MAC scheme
(Gen, Mac, Vrf)

Attacker wins the game if

…

m2

t2

m*,t*

1. Vrfk(m*,t*) = ACCEPT &
 2. m* not in Q

Q = m1, m2, …

Mack(mi) → ti

The MAC scheme is secure if any PPT A wins the game only negligibly often.

Mac(k,)

